3.5.30 \(\int x (a+b \log (c (d+\frac {e}{\sqrt {x}})^n))^2 \, dx\) [430]

Optimal. Leaf size=288 \[ -\frac {5 b^2 e^3 n^2 \sqrt {x}}{6 d^3}+\frac {b^2 e^2 n^2 x}{6 d^2}+\frac {5 b^2 e^4 n^2 \log \left (d+\frac {e}{\sqrt {x}}\right )}{6 d^4}+\frac {b e^3 n \left (d+\frac {e}{\sqrt {x}}\right ) \sqrt {x} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}-\frac {b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 d^2}+\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}+\frac {b e^4 n \log \left (1-\frac {d}{d+\frac {e}{\sqrt {x}}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+\frac {11 b^2 e^4 n^2 \log (x)}{12 d^4}-\frac {b^2 e^4 n^2 \text {Li}_2\left (\frac {d}{d+\frac {e}{\sqrt {x}}}\right )}{d^4} \]

[Out]

1/6*b^2*e^2*n^2*x/d^2+11/12*b^2*e^4*n^2*ln(x)/d^4+5/6*b^2*e^4*n^2*ln(d+e/x^(1/2))/d^4-1/2*b*e^2*n*x*(a+b*ln(c*
(d+e/x^(1/2))^n))/d^2+1/3*b*e*n*x^(3/2)*(a+b*ln(c*(d+e/x^(1/2))^n))/d+b*e^4*n*ln(1-d/(d+e/x^(1/2)))*(a+b*ln(c*
(d+e/x^(1/2))^n))/d^4+1/2*x^2*(a+b*ln(c*(d+e/x^(1/2))^n))^2-b^2*e^4*n^2*polylog(2,d/(d+e/x^(1/2)))/d^4-5/6*b^2
*e^3*n^2*x^(1/2)/d^3+b*e^3*n*(a+b*ln(c*(d+e/x^(1/2))^n))*(d+e/x^(1/2))*x^(1/2)/d^4

________________________________________________________________________________________

Rubi [A]
time = 0.37, antiderivative size = 288, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 10, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.454, Rules used = {2504, 2445, 2458, 2389, 2379, 2438, 2351, 31, 2356, 46} \begin {gather*} -\frac {b^2 e^4 n^2 \text {PolyLog}\left (2,\frac {d}{d+\frac {e}{\sqrt {x}}}\right )}{d^4}+\frac {b e^4 n \log \left (1-\frac {d}{d+\frac {e}{\sqrt {x}}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}+\frac {b e^3 n \sqrt {x} \left (d+\frac {e}{\sqrt {x}}\right ) \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}-\frac {b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 d^2}+\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+\frac {5 b^2 e^4 n^2 \log \left (d+\frac {e}{\sqrt {x}}\right )}{6 d^4}+\frac {11 b^2 e^4 n^2 \log (x)}{12 d^4}-\frac {5 b^2 e^3 n^2 \sqrt {x}}{6 d^3}+\frac {b^2 e^2 n^2 x}{6 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(a + b*Log[c*(d + e/Sqrt[x])^n])^2,x]

[Out]

(-5*b^2*e^3*n^2*Sqrt[x])/(6*d^3) + (b^2*e^2*n^2*x)/(6*d^2) + (5*b^2*e^4*n^2*Log[d + e/Sqrt[x]])/(6*d^4) + (b*e
^3*n*(d + e/Sqrt[x])*Sqrt[x]*(a + b*Log[c*(d + e/Sqrt[x])^n]))/d^4 - (b*e^2*n*x*(a + b*Log[c*(d + e/Sqrt[x])^n
]))/(2*d^2) + (b*e*n*x^(3/2)*(a + b*Log[c*(d + e/Sqrt[x])^n]))/(3*d) + (b*e^4*n*Log[1 - d/(d + e/Sqrt[x])]*(a
+ b*Log[c*(d + e/Sqrt[x])^n]))/d^4 + (x^2*(a + b*Log[c*(d + e/Sqrt[x])^n])^2)/2 + (11*b^2*e^4*n^2*Log[x])/(12*
d^4) - (b^2*e^4*n^2*PolyLog[2, d/(d + e/Sqrt[x])])/d^4

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 2351

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[x*(d + e*x^r)^(q +
 1)*((a + b*Log[c*x^n])/d), x] - Dist[b*(n/d), Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)
*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] - Dist[b*n*(p/(e*(q + 1))), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2379

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Simp[(-Log[1 +
d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)), x] + Dist[b*n*(p/(d*r)), Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^
(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]

Rule 2389

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/(x_), x_Symbol] :> Dist[1/d, Int[(d
 + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x), x], x] - Dist[e/d, Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /; F
reeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2445

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f
 + g*x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])^p/(g*(q + 1))), x] - Dist[b*e*n*(p/(g*(q + 1))), Int[(f + g*x)^(q
+ 1)*((a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*
f - d*g, 0] && GtQ[p, 0] && NeQ[q, -1] && IntegersQ[2*p, 2*q] && ( !IGtQ[q, 0] || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2458

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[(g*(x/e))^q*((e*h - d*i)/e + i*(x/e))^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2 \, dx &=-\left (2 \text {Subst}\left (\int \frac {\left (a+b \log \left (c (d+e x)^n\right )\right )^2}{x^5} \, dx,x,\frac {1}{\sqrt {x}}\right )\right )\\ &=\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2-(b e n) \text {Subst}\left (\int \frac {a+b \log \left (c (d+e x)^n\right )}{x^4 (d+e x)} \, dx,x,\frac {1}{\sqrt {x}}\right )\\ &=\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2-(b n) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x \left (-\frac {d}{e}+\frac {x}{e}\right )^4} \, dx,x,d+\frac {e}{\sqrt {x}}\right )\\ &=\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2-\frac {(b n) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{\left (-\frac {d}{e}+\frac {x}{e}\right )^4} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d}+\frac {(b e n) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x \left (-\frac {d}{e}+\frac {x}{e}\right )^3} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d}\\ &=\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+\frac {(b e n) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{\left (-\frac {d}{e}+\frac {x}{e}\right )^3} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^2}-\frac {\left (b e^2 n\right ) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x \left (-\frac {d}{e}+\frac {x}{e}\right )^2} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^2}-\frac {\left (b^2 e n^2\right ) \text {Subst}\left (\int \frac {1}{x \left (-\frac {d}{e}+\frac {x}{e}\right )^3} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{3 d}\\ &=-\frac {b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 d^2}+\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2-\frac {\left (b e^2 n\right ) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{\left (-\frac {d}{e}+\frac {x}{e}\right )^2} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^3}+\frac {\left (b e^3 n\right ) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x \left (-\frac {d}{e}+\frac {x}{e}\right )} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^3}-\frac {\left (b^2 e n^2\right ) \text {Subst}\left (\int \left (-\frac {e^3}{d (d-x)^3}-\frac {e^3}{d^2 (d-x)^2}-\frac {e^3}{d^3 (d-x)}-\frac {e^3}{d^3 x}\right ) \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{3 d}+\frac {\left (b^2 e^2 n^2\right ) \text {Subst}\left (\int \frac {1}{x \left (-\frac {d}{e}+\frac {x}{e}\right )^2} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{2 d^2}\\ &=-\frac {b^2 e^3 n^2 \sqrt {x}}{3 d^3}+\frac {b^2 e^2 n^2 x}{6 d^2}+\frac {b^2 e^4 n^2 \log \left (d+\frac {e}{\sqrt {x}}\right )}{3 d^4}+\frac {b e^3 n \left (d+\frac {e}{\sqrt {x}}\right ) \sqrt {x} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}-\frac {b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 d^2}+\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+\frac {b^2 e^4 n^2 \log (x)}{6 d^4}+\frac {\left (b e^3 n\right ) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{-\frac {d}{e}+\frac {x}{e}} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^4}-\frac {\left (b e^4 n\right ) \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^4}+\frac {\left (b^2 e^2 n^2\right ) \text {Subst}\left (\int \left (\frac {e^2}{d (d-x)^2}+\frac {e^2}{d^2 (d-x)}+\frac {e^2}{d^2 x}\right ) \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{2 d^2}-\frac {\left (b^2 e^3 n^2\right ) \text {Subst}\left (\int \frac {1}{-\frac {d}{e}+\frac {x}{e}} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^4}\\ &=-\frac {5 b^2 e^3 n^2 \sqrt {x}}{6 d^3}+\frac {b^2 e^2 n^2 x}{6 d^2}+\frac {5 b^2 e^4 n^2 \log \left (d+\frac {e}{\sqrt {x}}\right )}{6 d^4}+\frac {b e^3 n \left (d+\frac {e}{\sqrt {x}}\right ) \sqrt {x} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}-\frac {b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 d^2}+\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}-\frac {e^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2}{2 d^4}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+\frac {b e^4 n \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right ) \log \left (-\frac {e}{d \sqrt {x}}\right )}{d^4}+\frac {11 b^2 e^4 n^2 \log (x)}{12 d^4}-\frac {\left (b^2 e^4 n^2\right ) \text {Subst}\left (\int \frac {\log \left (1-\frac {x}{d}\right )}{x} \, dx,x,d+\frac {e}{\sqrt {x}}\right )}{d^4}\\ &=-\frac {5 b^2 e^3 n^2 \sqrt {x}}{6 d^3}+\frac {b^2 e^2 n^2 x}{6 d^2}+\frac {5 b^2 e^4 n^2 \log \left (d+\frac {e}{\sqrt {x}}\right )}{6 d^4}+\frac {b e^3 n \left (d+\frac {e}{\sqrt {x}}\right ) \sqrt {x} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{d^4}-\frac {b e^2 n x \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{2 d^2}+\frac {b e n x^{3/2} \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )}{3 d}-\frac {e^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2}{2 d^4}+\frac {1}{2} x^2 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+\frac {b e^4 n \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right ) \log \left (-\frac {e}{d \sqrt {x}}\right )}{d^4}+\frac {11 b^2 e^4 n^2 \log (x)}{12 d^4}+\frac {b^2 e^4 n^2 \text {Li}_2\left (1+\frac {e}{d \sqrt {x}}\right )}{d^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 307, normalized size = 1.07 \begin {gather*} \frac {3 d^4 x^2 \left (a-b n \log \left (d+\frac {e}{\sqrt {x}}\right )+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )^2+b n \left (a-b n \log \left (d+\frac {e}{\sqrt {x}}\right )+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right ) \left (d e \sqrt {x} \left (6 e^2-3 d e \sqrt {x}+2 d^2 x\right )-6 \left (e^4-d^4 x^2\right ) \log \left (d+\frac {e}{\sqrt {x}}\right )+6 e^4 \log \left (\frac {e}{\sqrt {x}}\right )\right )-b^2 n^2 \left (3 \left (e^4-d^4 x^2\right ) \log ^2\left (d+\frac {e}{\sqrt {x}}\right )+e^2 \left (5 d e \sqrt {x}-d^2 x+11 e^2 \log \left (-\frac {e}{d \sqrt {x}}\right )\right )-e \log \left (d+\frac {e}{\sqrt {x}}\right ) \left (11 e^3+6 d e^2 \sqrt {x}-3 d^2 e x+2 d^3 x^{3/2}+6 e^3 \log \left (-\frac {e}{d \sqrt {x}}\right )\right )-6 e^4 \text {Li}_2\left (1+\frac {e}{d \sqrt {x}}\right )\right )}{6 d^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(a + b*Log[c*(d + e/Sqrt[x])^n])^2,x]

[Out]

(3*d^4*x^2*(a - b*n*Log[d + e/Sqrt[x]] + b*Log[c*(d + e/Sqrt[x])^n])^2 + b*n*(a - b*n*Log[d + e/Sqrt[x]] + b*L
og[c*(d + e/Sqrt[x])^n])*(d*e*Sqrt[x]*(6*e^2 - 3*d*e*Sqrt[x] + 2*d^2*x) - 6*(e^4 - d^4*x^2)*Log[d + e/Sqrt[x]]
 + 6*e^4*Log[e/Sqrt[x]]) - b^2*n^2*(3*(e^4 - d^4*x^2)*Log[d + e/Sqrt[x]]^2 + e^2*(5*d*e*Sqrt[x] - d^2*x + 11*e
^2*Log[-(e/(d*Sqrt[x]))]) - e*Log[d + e/Sqrt[x]]*(11*e^3 + 6*d*e^2*Sqrt[x] - 3*d^2*e*x + 2*d^3*x^(3/2) + 6*e^3
*Log[-(e/(d*Sqrt[x]))]) - 6*e^4*PolyLog[2, 1 + e/(d*Sqrt[x])]))/(6*d^4)

________________________________________________________________________________________

Maple [F]
time = 0.03, size = 0, normalized size = 0.00 \[\int x \left (a +b \ln \left (c \left (d +\frac {e}{\sqrt {x}}\right )^{n}\right )\right )^{2}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*ln(c*(d+e/x^(1/2))^n))^2,x)

[Out]

int(x*(a+b*ln(c*(d+e/x^(1/2))^n))^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(d+e/x^(1/2))^n))^2,x, algorithm="maxima")

[Out]

1/2*b^2*n^2*x^2*log(d*sqrt(x) + e)^2 - integrate(-1/2*(2*(b^2*log(c)^2 + 2*a*b*log(c) + a^2)*x^(3/2)*e + 2*(b^
2*d*log(c)^2 + 2*a*b*d*log(c) + a^2*d)*x^2 - (b^2*d*n*x^2 - 4*(b^2*log(c) + a*b)*x^(3/2)*e - 4*(b^2*d*log(c) +
 a*b*d)*x^2 + 4*(b^2*d*x^2 + b^2*x^(3/2)*e)*log(x^(1/2*n)))*n*log(d*sqrt(x) + e) + 2*(b^2*d*x^2 + b^2*x^(3/2)*
e)*log(x^(1/2*n))^2 - 4*((b^2*log(c) + a*b)*x^(3/2)*e + (b^2*d*log(c) + a*b*d)*x^2)*log(x^(1/2*n)))/(d*x + sqr
t(x)*e), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(d+e/x^(1/2))^n))^2,x, algorithm="fricas")

[Out]

integral(b^2*x*log(c*((d*x + sqrt(x)*e)/x)^n)^2 + 2*a*b*x*log(c*((d*x + sqrt(x)*e)/x)^n) + a^2*x, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \left (a + b \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}\right )^{2}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*ln(c*(d+e/x**(1/2))**n))**2,x)

[Out]

Integral(x*(a + b*log(c*(d + e/sqrt(x))**n))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(d+e/x^(1/2))^n))^2,x, algorithm="giac")

[Out]

integrate((b*log(c*(d + e/sqrt(x))^n) + a)^2*x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x\,{\left (a+b\,\ln \left (c\,{\left (d+\frac {e}{\sqrt {x}}\right )}^n\right )\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*log(c*(d + e/x^(1/2))^n))^2,x)

[Out]

int(x*(a + b*log(c*(d + e/x^(1/2))^n))^2, x)

________________________________________________________________________________________